If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5m^2+35m-60=0
a = -5; b = 35; c = -60;
Δ = b2-4ac
Δ = 352-4·(-5)·(-60)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5}{2*-5}=\frac{-40}{-10} =+4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5}{2*-5}=\frac{-30}{-10} =+3 $
| 3.8=z+2.5 | | x/7+11=36 | | -14x-6=-50 | | y=330(0.245)^5 | | 105+5x+14+6x+17=180 | | y=10000(1.25)^7 | | y=5000(1.04)^7 | | y=18000(1.02)^11 | | 1.783=290x-1.900 | | y=23700(0.135)^10 | | 1783=290x-1900 | | y=970(0.267)^13 | | 2(-2)-3y=6 | | (t)=-4t^2+16+20 | | 14t+30=6t | | 14t+30=12t | | 14t+15=12t | | 3(2x-9)=16 | | 7776^3x+3=216^3x-5 | | 3(2x+3)=3x+18 | | 20x+46=180 | | 5p=123 | | (t)=-16t+63t+20 | | 20x-46=180 | | -(x+2)=x+14 | | x+1=-(x+11) | | 0.5(p+24)=10 | | 37x+1/2-(+1/4)=9(4x-7)+5 | | -13=x/14-13 | | 7(x+8)-2x=11 | | 6(w+5)+5w=19 | | 36=-u+284 |